成年男人裸j网站 I 精品日产卡一卡二卡三入口 I 欧美黑人粗大xxxxx猛交 I 国产视频在线免费观看 I 日本特黄成人 I 免费无码av污污污在线观看 I 美国一区二区三区无码视频 I 亚洲欧美日韩一区二区三区四区 I 国产jjizz女人多水 I 日韩久久影视 I 91亚洲国产成人精品一区二三 I 老司机久久精品 I 屁屁国产第一页草草影院 I 我我色综合 I 成人免费大片黄在线播放 I 欧美三级在线电影免费 I 国产伊人网 I 精品久久久久99 I 末发育娇小性色xxxxx I 荔枝污 I 国产寡妇亲子伦一区二区三区四区 I 国产三级黄色片 I 秋霞久久久久久一区二区 I 95精品视频 I 超碰碰碰 I 特级黄色一级大片 I 视频在线日韩 I 亚洲成年人网

歡迎來到北京博奧森生物技術有限公司網站!
咨詢熱線

18611424007

當前位置:首頁  >  新聞資訊  >  7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

更新時間:2024-09-03  |  點擊率:977

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

          截止目前,引用Bioss產品發表的文獻共30849篇總影響因子149368.62分,發表在Nature, Science, Cell以及Immunity等頂級期刊的文獻共76篇,合作單位覆蓋了清華、北大、復旦、華盛頓大學、麻省理工學院、東京大學以及紐約大學等國際研究機構上百所。

          我們每月收集引用Bioss產品發表的文獻。若您在當月已發表SCI文章,但未被我公司收集,請致電Bioss,我們將贈予現金鼓勵,金額標準請參考“發文章 領獎金"活動頁面。 

         近期收錄2024年7月引用Bioss產品發表的文獻共338篇(圖一,綠色柱),文章影響因子(IF) 總和高達1817.4,其中,10分以上文獻35篇(圖二)。

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

 圖一

 

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


圖二


本文主要分享引用Bioss產品發表文章至iMeta, ADVANCED  FUNCTIONAL MATERIALSI, Bioactive Materials等期刊的10篇IF>15的文獻摘要,讓我們一起欣賞吧。

 
iMeta [IF=23.7]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

文獻引用產品:

PV-0024 | Polink-2 plus®Polymer HRP Detection System (Mouse) | IHC

作者單位:中國科學院動物研究所

摘要:Emerging evidence has demonstrated the profound impact of the gut microbiome on cardiovascular diseases through the production of diverse metabolites. Using an animal model of myocardial ischemia–reperfusion (I/R) injury, we found that the prophylactic administration of a well-known probiotic, Bifidobacterium infantis (B. infantis), exhibited cardioprotective effects in terms of preserving cardiac contractile function and preventing adverse cardiac remodeling following I/R and that these cardioprotective effects were recapitulated by its metabolite inosine. Transcriptomic analysis further revealed that inosine mitigated I/R-induced cardiac inflammation and cell death. Mechanistic investigations elucidated that inosine suppressed the production of pro-inflammatory cytokines and reduced the numbers of dendritic cells and natural killer cells, achieved through the activation of the adenosine A2A receptor (A2AR) that when inhibited abrogated the cardioprotective effects of inosine. Additionally, in vitro studies using C2C12 myoblasts revealed that inosine attenuated cell death by serving as an alternative carbon source for adenosine triphosphate (ATP) generation through the purine salvage pathway when subjected to oxygen-glucose deprivation/reoxygenation that simulated myocardial I/R injury. Likewise, inosine reversed the I/R-induced decrease in ATP levels in mouse hearts. Taken together, our findings indicate that B. infantis or its metabolite inosine exerts cardioprotective effects against I/R by suppressing cardiac inflammation and attenuating cardiac cell death, suggesting prophylactic therapeutic options for acute ischemic cardiac injury.


ADVANCED FUNCTIONAL MATERIALS [IF=18.5]


7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


文獻引用產品:

bs-5898R | HIF3 alpha Rabbit pAb | IF

作者單位:廣西醫科大學第一附屬醫院

摘要:Inflammatory infiltration of synovial M1 macrophages, high levels of ROS, and NO exacerbate osteoarthritis (OA) progression. The PdZn/CoSA-NC nanozymes, which are highly ordered PdZn intermetallic nanoparticles loaded with Co single atom N-doped carbon-rich in multi-level pores, in an attempt to serve as SOD and CAT mimicking nanozymes for OA therapy is designed. The PdZn/CoSA-NC nanozymes' high electron transfer and dual active site sufficient exposure enhances free radical adsorption and lower reaction energies, accelerating SOD-like, CAT-like, and GPx-like catalyzed reactions, outperforming CoSA-NC and PdZn/NC alone. Furthermore, PdZn/CoSA-NC nanozymes exhibit favorable biocompatibility, reduce synovial macrophage oxidative stress in OA, alleviate hypoxia, restore mitochondrial function, regulate energy metabolism, increase antioxidant factors, and reduce inflammatory factors, thus effectively mitigating the progression of OA. Mechanistically, PdZn/CoSA-NC nanozymes downregulate M1-type phenotypic markers like IL-1β by regulating purine metabolism. The PdZn/CoSA-NC nanozymes offer a novel approach to treating oxidative stress-related inflammatory diseases.

 

Bioactive Materials [IF=18.0]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

文獻引用產品:

bs-0549R | Collagen III Rabbit pAb | IF

作者單位:浙江大學醫學院附屬第一醫院

摘要:Tendinopathy leads to low-grade tissue inflammation and chronic damage, which progresses due to pathological imbalance in angiogenesis. Reducing early pathological vascularization may be a new approach in helping to regenerate tendon tissue. Conventional stem cell therapy and tissue engineering scaffolds have not been highly effective at treating tendinopathy. In this study, tissue engineered stem cells (TSCs) generated using human umbilical cord mesenchymal stem cells (hUC-MSCs) were combined with microcarrier scaffolds to limit excessive vascularization in tendinopathy. By preventing VEGF receptor activation through their paracrine function, TSCs reduced in vitro angiogenesis and the proliferation of vascular endothelial cells. TSCs also decreased the inflammatory expression of tenocytes while promoting their anabolic and tenogenic characteristics. Furthermore, local injection of TSCs into rats with collagenase-induced tendinopathy substantially reduced early inflammation and vascularization. Mechanistically, transcriptome sequencing revealed that TSCs could reduce the progression of pathological angiogenesis in tendon tissue, attributed to Rap1-mediated vascular inhibition. TSCs may serve as a novel and practical approach for suppressing tendon vascularization, and provide a promising therapeutic agent for early-stage clinical tendinopathy.

 

Bioactive Materials [IF=18.0]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


文獻引用產品:

bs-0185R | PDGF-B Rabbit pAb | IF

作者單位:清華大學

摘要:Fungal corneal ulcer is one of the leading causes of corneal blindness in developing countries. Corneal scars such as leukoplakia are formed due to inflammation, oxidative stress and non-directed repair, which seriously affect the patients' subsequent visual and life quality. In this study, drawing inspiration from the oriented structure of collagen fibers within the corneal stroma, we first proposed the directional arrangement of CuTA-CMHT hydrogel system at micro and macro scales based on the 3D printing extrusion method combined with secondary patterning. It played an antifungal role and induced oriented repair in therapy of fungal corneal ulcer. The results showed that it effectively inhibited Candida albicans, Aspergillus Niger, Fusarium sapropelum, which mainly affects TNF, NF-kappa B, and HIF-1 signaling pathways, achieving effective antifungal functions. More importantly, the fibroblasts interacted with extracellular matrix (ECM) of corneal stroma through formation of focal adhesions, promoted the proliferation and directional migration of cells in vitro, induced the directional alignment of collagen fibers and corneal stromal orthogonally oriented repair in vivo. This process is mainly associated with MYLK, MYL9, and ITGA3 molecules. Furthermore, the downregulation the growth factors TGF-β and PDGF-β inhibits myofibroblast development and reduces scar-type ECM production, thereby reducing corneal leukoplakia. It also activates the PI3K-AKT signaling pathway, promoting corneal healing. In conclusion, the oriented CuTA-CMHT hydrogel system mimics the orthogonal arrangement of collagen fibers, inhibits inflammation, eliminates reactive oxygen species, and reduces corneal leukoplakia, which is of great significance in the treatment of fungal corneal ulcer and is expected to write a new chapter in corneal tissue engineering.

 

Nature Cell Biology [IF=17.3]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


文獻引用產品:

bs-4296R | hnRNP K Rabbit pAb | ChIP

bs-0287R | His tag Rabbit pAb | ChIP

bs-18516R | CNBP/ZNF9 Rabbit pAb | IF

BA00208 | Cell Counting Kit-8 

作者單位:中國科學院長春應用化學研究所

摘要:Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.


ACS Nano [IF=15.8]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

文獻引用產品:

bs-3485R | Phospho-NFKB p65 (Ser468) Rabbit pAb | WB

作者單位:中國海洋大學

摘要:Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin’s ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (~43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs’ skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.

 
ACS Nano [IF=15.8]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現

文獻引用產品:

bs-0127R | Bax Mouse pAb | WB

bs-4563R | Bcl-2 Rabbit pAb | WB

bs-0812R | IL-1 Beta Rabbit pAb | WB

作者單位:中國海洋大學

摘要:Exogenous polysulfhydryls (R-SH) supplementation and nitric oxide (NO) gas molecules delivery provide essential antioxidant buffering pool components and anti-inflammatory species in cellular defense against injury, respectively. Herein, the intermolecular disulfide bonds in bovine serum albumin (BSA) molecules were reductively cleaved under native and mild conditions to expose multiple sulfhydryl groups (BSA-SH), then sulfhydryl-nitrosylated (R-SNO), and nanoprecipitated to form injectable self-sulfhydrated, nitro-fixed albumin nanoparticles (BSA-SNO NPs), allowing albumin to act as a NO donor reservoir and multiple sulfhydryl group transporter while also preventing unfavorable oxidation and self-cross-linking of polysulfhydryl groups. In two mouse models of ischemia/reperfusion-induced and endotoxin-induced acute liver injury (ALI), a single low dosage of BSA-SNO NPs (S-nitrosothiols: 4 μmol·kg–1) effectively attenuated oxidative stress and systemic inflammation cascades in the upstream pathophysiology of disease progression, thus rescuing dying hepatocytes, regulating host defense, repairing microcirculation, and restoring liver function. By mechanistically upregulating the antioxidative signaling pathway (Nrf-2/HO-1/NOQ1) and inhibiting the inflammatory cytokine storm (NF-κB/p-IκBα/TNF-α/IL-β), BSA-SNO NPs blocked the initiation of the mitochondrial apoptotic signaling pathway (Cyto C/Bcl-2 family/caspase-3) and downregulated the cell pyroptosis pathway (NLRP3/ASC/IL-1β), resulting in an increased survival rate from 26.7 to 73.3%. This self-sulfhydrated, nitro-fixed functionalized BSA nanoformulation proposes a potential drug-free treatment strategy for ALI.

 

Journal of Magnesium and Alloys [IF=15.8]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


文獻引用產品:

bs-34032R | VEGF Rabbit pAb | WB

bsm-33235M | alpha Tubulin (Acetyl Lys40) Mouse mAb | WB

作者單位:南方醫科大學口腔醫院

摘要:The regeneration of infected bone defects is still challenging and time-consuming, due to the adverse osteogenic microenvironment caused by bacterial contamination and pronounced ischemia. Biodegradable magnesium (Mg)-based alloys are desirable for orthopedic implants due to the mechanical properties approximating those of human bone and the released Mg2+ ions essential to osteogenic activity. However, the fast and uncontrolled self-degradation of Mg alloy, along with the inadequate antimicrobial activity, limit their strength in the osteogenic microenvironment. Inspired by the structural and physiological characteristics of “fish scales," two-dimensional (2D) nanomaterials, black phosphorus (BP) and graphene oxide (GO), were assembled together under the action of pulsed electric field. The bionic 2D layered BP/GO nano-coating was constructed for infection resistance, osteogenic microenvironment optimization, and biodegradation control. In the early stage of implantation, it exerted a photothermal effect to ablate bacterial biofilms and avoid contaminating the microenvironment. The blocking effect of the “nano fish scales" - 2D material superposition regulated the degradation of implants. In the later stage, it attracted the migration of vascular endothelial cells (VECs) and released phosphate slowly for in situ mineralization to create the microenvironment favoring vascularized bone formation. It is indicated that the enhancement of microtubule deacetylation and cytoskeletal reorganization played a key role in the effect of VEC migration and angiogenesis. This study provided a promising bionic strategy for creating osteogenic microenvironments that match the sequential healing process of infected bone defects.

 

Nature Communication [IF=14.7]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


文獻引用產品:

bs-0297G-HRP | Goat Anti-Human IgG H&L, HRP conjugated | ELISA

bs-0296G-HRP | Goat Anti-Mouse IgG H&L, HRP conjugated | ELISA

作者單位:香港大學

摘要:Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.

 

Acta Pharmaceutica Sinica B [IF=14.7]

7月文獻戰報-Bioss抗體新增高分文獻精彩呈現


文獻引用產品:

bs-1447R | HIF 2 alpha Rabbit pAb | IF、FC

bs-5913R | Calreticulin Rabbit pAb | IF

作者單位:北京大學

摘要:We prepared biocompatible and environment-friendly zinc oxide nanoparticles (ZnO NPs) with upconversion properties and catalase-like nanozyme activity. Photodynamic therapy (PDT) application is severely limited by the poor penetration of UV?Visible light and a hypoxic tumor environment. Here, we used ZnO NPs as a carrier for the photosensitizer chlorin e6 (Ce6) to construct zinc oxide–chlorin e6 nanoparticles (ZnO-Ce6 NPs), simultaneously addressing both problems. In terms of penetration, ZnO NPs convert 808 nm near-infrared light into 401 nm visible light to excite Ce6, achieving deep-penetrating photodynamic therapy under long-wavelength light. Interestingly, the ability to emit short-wavelength light under long-wavelength light is usually observed in upconversion nanoparticles. As nanozymes, ZnO NPs can catalyze the decomposition of hydrogen peroxide in tumors, providing oxygen for photodynamic action and relieving hypoxia. The enhanced photodynamic action produces a large amount of reactive oxygen species, which overactivate autophagy and trigger immunogenic cell death (ICD), leading to antitumor immunotherapy. In addition, even in the absence of light, ZnO and ZnO-Ce6 NPs can induce ferroptosis of tumor cells and exert antitumor effects.

主站蜘蛛池模板: 国产精品99re | 粗大的内捧猛烈进出视频 | 精彩视频在线观看 | 超碰99热| 国产成人亚洲精品无码mp4 | m youjizz| 国产999精品久久久影片官网 | 色天使久久综合网天天 | 99er在线视频 | 亚洲欧美中文字幕国产 | 精品国产一区二区三区不卡蜜臂 | 亚洲欧美中文字幕5发布 | 亚洲 a v无 码免 费 成 人 a v | 爱操av | 北条麻妃在线观看视频 | 亚洲婷婷小说 | 永久免费国产 | 青青草啪啪 | 国产又黄又嫩又滑又白 | 国产91美女视频 | 北条麻妃在线一区二区韩世雅 | 五月激情丁香网 | 毛片美国基地 | 麻豆成人91精品二区三区 | 99男女国产精品免费视频 | 欧美国产日韩在线播放 | 亚洲一区二区视频在线观看 | 日本国产乱弄免费视频 | 欧洲成人一区 | 午夜毛片在线播放 | 成年轻人电影www无码 | 国产精品自在拍一区二区不卡 | 亚洲韩国日本高清一区 | 欧美人与性动交ccoo | 日韩欧美激情片 | 国产系列丝袜熟女精品网站 | 国产一区二区三区在线 | 成人午夜片av在线看 | 午夜在线免费观看视频 | 亚洲欧美另类动漫 | 国产精品乱码一区二区三 | 久久中文字幕人妻av熟女 | 国产综合无码一区二区辣椒 | 99精品视频在线在线观看视频 | 欧美内射深插日本少妇 | 少妇被粗大的猛烈进出图片 | 欧美人妻一区二区三区 | 中文字幕人妻熟女av | 99久久99久久精品国产片果冻 | 高潮潮喷奶水飞溅视频无码 | 日本无遮真人祼交视频 | 亚洲欧美国产欧美色欲 | 亚洲 欧美 日韩 综合aⅴ电影 | 亚洲精品国产乱码av在线观看 | 做爰高潮hd色即是空 | 久久国产精品萌白酱免费 | 国产精品久久久久久久久久久久久久久 | 日韩综合av | 欧美精品69| 国产乱码精品一区二区蜜臀 | 在线观看的网站 | 欧美一性一交一乱 | 祥仔av免费一区二区三区四区 | 国产精品无码mv在线观看 | 亚洲欧洲第一页 | 中文字幕一区二区三区视频 | 最新国产在线拍揄自揄视频 | 成人免费无码大片a毛片18 | 欧美日韩免费一区中文 | 亚洲四区视频 | 最近2019中文字幕大全第二页 | 国产福利视频一区二区三区 | 亚洲 日韩 国产欧美 另类 | 尹人av | 午夜成人精品福利网站在线观看 | 五月色婷 | 国内免费久久久久久久久久 | 人妻少妇-嫩草影院 | 91亚洲精品久久久蜜桃 | 欧美在线视频第一页 | 国产女人18毛片水真多1 | 夜夜躁日日躁狠狠久久av | 激情婷婷网 | 天天操天天舔天天干 | 亚洲精品无码午夜福利理论片 | 热久精品 | 伊人污| 伊人色综合久久天天小片 | 在线天堂中文www官网 | 亚洲欧洲成人 | 国产你懂的在线 | 欧美日本三级 | 日韩不卡毛片 | 一个人免费观看的www视频 | 欧美成人无码a区视频在线观看 | 在线天堂最新版资源 | 教室疯狂高潮呻吟摸揉男男视频 | 精品国产一区二区三区在线观看 | 久久久久久免费免费 |